

actions produce the N_2H_3 free radical which in acid solution is believed to be protonated^{12,13} (N_2H_4 ·⁺).

Assuming appreciable hydrolysis of Ce^{4+} to $CeOH^{3+}$, a rate law of the form

$$-\frac{\mathrm{d}[\mathrm{Ce}(\mathrm{IV})]}{\mathrm{d}t} = k_{\mathrm{H}}[\mathrm{Ce}(\mathrm{IV})][\mathrm{N}_{2}\mathrm{H}_{5}^{+}] \qquad (\mathrm{III})^{2}$$

is predicted where

$$k_{\rm H} = \frac{k_2({\rm H}^+) + k_3 K}{({\rm H}^+) + K}$$
(IV)

and K (= [(CeOH³⁺)(H⁺)]/(Ce⁴⁺)) is the first hydrolysis constant of Ce⁴⁺. If $k_3K \gg k_2(H^+)$, the reciprocal of eq IV is

$$\frac{1}{k_{\rm H}} = \frac{({\rm H}^+)}{k_3 K} + \frac{1}{k_3} \tag{V}$$

(12) J. Q. Adams and J. R. Thomas, J. Chem. Phys., **39**, 1904 (1963).
(13) H. R. Falle, Can. J. Chem., **46**, 1703 (1968).

A plot of eq V is shown in Figure 3. It is linear as predicted with a slope $(=1/k_3K)$ of 0.15 sec. Baker, Newton, and Kahn¹⁴ have estimated that in 2 *M* HClO₄ the first hydrolysis of Ce⁴⁺ is at least 85% complete. This would indicate that the first hydrolysis constant is $K \approx 12 \ M$. Offner and Skoog¹⁵ also studied this hydrolysis and reported a value of $K \approx 0.2 \ M$. Because of the significant difference between these reported hydrolysis constants, calculating the value of k_3 from the slope of Figure 3 would be meaningless. It is, however, obvious that k_3 is much greater than k_2 .

That CeOH⁺ is so much more reactive than Ce⁴⁺ toward protonated hydrazine molecules is similar to Davies and Kustin's⁸ observation regarding the relative reactivity of MnOH²⁺ and Mn³⁺ toward N₂H₅⁺. We are therefore also led to the conclusion that the most important oxidation mechanism is H atom transfer. The ultimate fate, however, of the protonated hydrazyl free radical is necessarily different when Ce(IV) rather than Mn(III) is used as the oxidant since N₂ gas is formed in the former case and not in the latter case. In this study, with Ce(IV) as oxidant the hydrazine probably follows the one electron oxidation scheme proposed by Kirk and Browne and discussed by Cahn and Powell¹

$$N_2H_4 \longrightarrow N_2H_3 \longrightarrow NH_2NHNHNH_2 \longrightarrow 2NH_3 + N_2$$

Acknowledgment.—The authors are indebted to Mr. A. Harrison for doing the mass spectrometric analysis of evolved gas. In addition we would like to acknowledge the National Science Foundation Undergraduate Research Participation Program for partial support of this research.

(14) F. B. Baker, T. W. Newton, and M. Kahn, J. Phys. Chem., 64, 109 (1960).

(15) H. G. Offner and D. A. Skoog, Anal. Chem., 38, 1520 (1966).

Contribution from the Department of Chemistry, Brigham Young University, Provo, Utah 84601

High-Pressure Synthesis of Rare Earth Dimanganese Compounds with the $MgZn_2$ (Laves) Structure¹

BY NORMAN L. EATOUGH*2 AND H. TRACY HALL

Received May 2, 1972

Laves structures of the $MgZn_2$ type were synthesized for $GdMn_2$, $TbMn_2$, $DyMn_2$, $HoMn_2$, YMn_2 , and $YbMn_2$ under high-temperature and high-pressure conditions. All but the Yb compound were previously known only in the $MgCu_2$ structure. YbMn_2 had not been prepared before this work. Also the synthesis of $ErMn_2$ was verified and $SmMn_2$ was prepared at high pressure.

Introduction

The rare earth dimanganese $(REMn_2)$ compounds are known to exhibit some interesting changes in crystal structure as the atomic number of the rare earth

(1) This research supported by the U. S. Army Research Office-Durham and the National Science Foundation.

(2) Author to whom correspondence should be addressed at the California State Polytechnic College, San Luis Obispo, California. varies.³ Both the light and heavy rare earths (at 1 atm) form REMn₂ compounds in the C14 (MgZn₂) Laves structure while the intermediate rare earths form REMn₂ compounds in the C15 (MgCu₂) Laves structure. This information is summarized in Table I as are, also, the high-pressure results of this paper.

(3) R. P. Elliot, Proc. Conf. Rare Earth Res., 4, 215 (1964).

RARE EARTH DIMANGANESE COMPOUNDS

IABLE I																	
CRYSTAL STRUCTURES OF REMn ₂ Compounds ^a																	
	Sc	Y	La	Ce	Pr	Nd	Рш	Sm	Eu	Gd	Тb	Dy	но	Er	Тш	¥Ь	Lu
1 atm	\mathbf{H}	С	х	х	\mathbf{H}	\mathbf{H}	х	Ċ,H	х	С	С	С	С	C,H	H	x	н
High pressure		H			x	X		\mathbf{H}		н	н	Η	\mathbf{H}	н	\mathbf{H}	н	\mathbf{H}
^a H. C14 (MgZn	2) typ	e (hex	agona	1); C	C15 (MgCu ₂) type (fcc); and	1X. no	known -	compo	und.					

LaMn₂ and CeMn₂ have not been prepared. $PrMn_2$ has been reported in the C14 phase⁴ but Oesterreicher reports that he could not duplicate this reported result. Rather, he obtained an α Mn type and a Th₆Mn₂₃ type.5,6

By application of high pressure simultaneously with high temperature, we have synthesized the MgZn₂ type structure for the dimanganides of Gd, Tb, Dy, Ho, and Y which were previously known only in the MgCu₂ structure and also YbMn₂ which was previously unknown. The compound SmMn₂, which has reportedly been synthesized at 1 atm in both Laves phases, could not be prepared by us at pressures below 50 kbar. Neither could we prepare the previously reported NdMn₂ in the pressure range covered by this work.

Experimental Section

The syntheses were carried out by application of high temperature at high pressure to a stoichiometric mixture of the elements in a tetrahedral anvil apparatus.^{7,8} The procedure and sample geometry were the same as has been described previously.9 Runs were carried out at 1300-1400° for 1 min followed by rapid quenching to room temperature and then release of pressure. Run times up to 2 hr and temperatures up to 2000° at 70 kbar were tried on the Nd-Mn system without success.

The rare earth metals were obtained from Research Chemicals, Inc., Burbank, Calif. Manganese was obtained from Baker Chemical Co. The metals were filed or crushed in air and particles passing a 100-mesh sieve were used for synthesis.

Products from the runs were crushed between two polished WC blocks and loaded in 0.5-mm glass capillaries; X-ray diffraction patterns were obtained with a 143.2 mm diameter Debye-Scherrer camera on a G. E. XRD-5 unit. Chromium (λ 2.29092 Å) radiation and V2O5 filters were used. Lattice parameters were obtained by a least-squares fit of $12-24 \ d$ values depending upon the pattern. The MgZn₂ type structures were identified by comparison of the X-ray diffraction patterns with the pattern for ErMn₂ of Wernick and Haszko.¹⁰ All diffraction lines were indexed to the MgZn₂ structure except for GdMn₂ which showed some weak lines from an unidentified impurity. It was concluded that the products were single phase.

Results

Table II shows the lattice parameters and calculated densities obtained in this study. These parameters give a smooth transition between the previously reported values for the light and heavy REMn₂ hexagonal compounds.

The minimum pressure required for synthesis of the $MgZn_2$ structure is shown in Figure 1. Although the synthesis of MgZn₂-type dimanganides of Pr, Nd, and Sm has been reported at 1 atm,^{3,4} we could not synthe-

		TABLE II		
LATTICE	PARAMETERS OF	HEXAGONAL	\mathbf{REMn}_2	Compounds
	a Å		60 Å	Density,
	60, 11		<i>u</i> , <i>n</i> .	g/сш•

$ErMn_2$	5.274 ± 4	8.626 ± 6	8.86
HoMn ₂	5.316 ± 2	8.672 ± 3	8.60
$DyMn_2$	5.356 ± 3	8.744 ± 5	8.33
$TbMn_2$	5.390 ± 3	8.786 ± 5	8.08
GdMn ₂	5.447 ± 3	8.893 ± 5	7.76
$SmMn_2$	5.501 ± 2	8.968 ± 4	7.36
$YbMn_2$	5.233 ± 3	8.561 ± 5	9.26
YMn_2	5.404 ± 7	8.848 ± 10	5.90

RARE EARTH

Figure 1.-Minimum pressure required for the synthesis of hexagonal REMn₂.

size SmMn₂ below 50 kbar and could not obtain NdMn₂ or PrMn₂ at any pressure between 10 and 70 kbar.

Discussion

Laves phases of AB2 compounds are known with $d_{\rm A}/d_{\rm B}$ ratios from 1.05 to 1.68 and it has been shown that there is no correlation between Laves structure type and the atomic diameter ratio.¹¹ Since all rare earth dimanganide compounds fall within this range of diameter ratios, the existence of the structure transition from hexagonal to cubic and back to hexagonal as the atomic number of the rare earth increases (1 atm synthesis) shows that other effects must be more important in determining which Laves structure is stable in this series.

The densities of the MgCu₂ and the MgZn₂ structures calculated from lattice parameters obtained at 1 atm are virtually identical and there is no reason to suspect a significant difference in compressibility of the two structures. Therefore, density differences do not seem to be a determining factor in forming one structure type in preference to another as has been found in other systems.12

(11) A. E. Dwight, Trans. Amer. Soc. Metals, 53, 479 (1961).

(12) N. L. Eatough, A. W. Webb, and H. T. Hall, Inorg. Chem., 8, 2069 (1969).

⁽⁴⁾ M. J. Teslyuk, P. I. Kripyakevic, and D. P. Frankevic, Kristallografiya, 9.558 (1964).

⁽⁵⁾ H. Oesterreicher, J. Less-Common Metals, 28, 7 (1971).

⁽⁶⁾ H. Oesterreicher, ibid., 24, 237 (1971).

⁽⁷⁾ H. T. Hall, Rev. Sci. Instrum., 29, 267 (1958). (8) H. T. Hall, ibid., 88, 1278 (1962).

⁽⁹⁾ N. L. Eatough and H. T. Hall, Inorg. Chem., 8, 1439 (1969). (10) J. H. Wernick and S. E. Haszko, Phys. Chem. Solids, 18, 207 (1961).